3.4

$\mathrm{P}(\mathrm{BIT})=\mathrm{P}(\mathrm{T} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{T})$.

$$
\begin{gathered}
\mathrm{P}(\mathrm{~T})=\mathrm{P}(\mathrm{~T} \mid \mathrm{B}) * \mathrm{P}(\mathrm{~B})+\mathrm{P}\left(\mathrm{~T} \mid \mathrm{B}^{\prime}\right) * \mathrm{P}\left(\mathrm{~B}^{\prime}\right) \\
0.1000061=0.7 * .000013+0.1 *(1-.000013)
\end{gathered}
$$

$\mathrm{P}(\mathrm{BIT})=0.7 * .000013 / .1000061=.000090994$

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{~B} \mid \mathrm{T}^{\prime}\right)=\mathrm{P}\left(\mathrm{~T} \mid \mathrm{B}^{\prime}\right) * \mathrm{P}\left(\mathrm{~B}^{\prime}\right) / \mathrm{P}(\mathrm{~T}) \\
.000086994=0.1 *(1-.000013) / .1000061
\end{gathered}
$$

3.9
$\mathrm{P}(\mathrm{A})=3 / 4 \quad \mathrm{P}(\mathrm{B})=2 / 5 \quad \mathrm{P}(\mathrm{A} \mathrm{U} \mathrm{B})=4 / 5$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} U \mathrm{~B})$
$7 / 20=3 / 4+2 / 5-4 / 5$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A})$ and so
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$3 / 14=(3 / 4) /(7 / 20)$

3.11

a. The probability that the driver's blood level does not exceed the legal limit given that the driver tested positive.
b. We are given that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right)=\mathrm{p}=.95$
$\mathrm{P}(\mathrm{B})=.05$, so $\mathrm{P}\left(\mathrm{B}^{\prime}\right)=1.0-.05=0.95$
Observe first that $\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$ and ($\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$) are disjoint, and that the union of these two sets is B^{\prime}. It follows that $\mathrm{P}\left(\mathrm{B}^{\prime}\right)=\mathrm{P}\left(\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \mathrm{U}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)\right)=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$ Rearranging terms gives
$\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}\left(\mathrm{B}^{\prime}\right)-\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
It follows that
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)^{*} \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\mathrm{P}\left(\mathrm{B}^{\prime}\right)-\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right) * \mathrm{P}\left(\mathrm{B}^{\prime}\right)$. So long as $\mathrm{P}\left(\mathrm{B}^{\prime}\right)>0$, we can divide through by $\mathrm{P}\left(\mathrm{B}^{\prime}\right)$ giving
$\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right)=1-\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right)$.
We wish to find $\mathrm{P}\left(\mathrm{B}^{\prime} \mid \mathrm{A}\right)=\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right) / \mathrm{P}(\mathrm{A})$
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B})+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right) * \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
$\mathrm{P}(\mathrm{A})=\mathrm{p} * 0.05+(1-\mathrm{p}) *(1-0.05)$
Then $\mathrm{P}\left(\mathrm{B}^{\prime} \mid \mathrm{A}\right)=(1-\mathrm{p}) *(1-0.05) /(\mathrm{p} * .05+(1-\mathrm{p}) * 1-.05)$

For $\mathrm{p}=.95$, this gives

$$
(.05 * . .95) /(.95 * .05+.05 * .95)=1 / 2
$$

c. We want $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) * \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})$
$=\mathrm{p} * 0.5 /(\mathrm{p} * .05+(1-\mathrm{p}) * .95)=.9$
Solving for p :

$$
\begin{aligned}
& .05 p=.045 p+.855-.855 p \\
& .86 p=.855 \\
& p=99.42 \%
\end{aligned}
$$

3.16
a:
$\mathrm{P}(\mathrm{T} \mid \mathrm{D})=.98$
$\mathrm{P}\left(\mathrm{T}^{\prime} \mid \mathrm{D}^{\prime}\right)=.95$
$\mathrm{P}(\mathrm{D})=.01$
$\mathrm{P}\left(\mathrm{D}^{\prime}\right)=.99$
$\mathrm{P}(\mathrm{D} \mid \mathrm{T})=\mathrm{P}(\mathrm{T} \mid \mathrm{D}) * \mathrm{P}(\mathrm{D}) / \mathrm{P}(\mathrm{T})$
$\mathrm{P}(\mathrm{T})=\mathrm{P}(\mathrm{T} \mid \mathrm{D}) * \mathrm{P}(\mathrm{D})+\mathrm{P}\left(\mathrm{T} \mid \mathrm{D}{ }^{\prime}\right) * \mathrm{P}\left(\mathrm{D}^{\prime}\right)$
$.0593=0.98 * .01+(1-.95) * .99$
$\mathrm{P}(\mathrm{D} \mid \mathrm{T})=.98 * .01 / .0593=.165$
b:
$\mathrm{P}(\mathrm{D} \mid(\mathrm{S} \cap \mathrm{T}))=\mathrm{P}(\mathrm{S} \cap \mathrm{T} \mid \mathrm{D}) * \mathrm{P}(\mathrm{D}) / \mathrm{P}(\mathrm{S} \cap \mathrm{T})$
$\left.\mathrm{P}(\mathrm{S} \cap \mathrm{T})=\mathrm{P}(\mathrm{S} \cap \mathrm{T} \mid \mathrm{D}) * \mathrm{P}(\mathrm{D})+\mathrm{P}(\mathrm{S} \cap \mathrm{T}) \mid \mathrm{D}^{\prime}\right) * \mathrm{P}\left(\mathrm{D}^{\prime}\right)$
$=\mathrm{P}(\mathrm{S}) \mid \mathrm{D}) * \mathrm{P}(\mathrm{D}) * \mathrm{P}(\mathrm{T} \mid \mathrm{D}) * \mathrm{P}(\mathrm{D})+\mathrm{P}\left(\mathrm{S}^{\prime} \mathrm{D}^{\prime}\right)^{*} \mathrm{P}^{\left(\mathrm{D}^{\prime}\right) * \mathrm{P}\left(\mathrm{T} \mid \mathrm{D}^{\prime}\right) * \mathrm{P}(\mathrm{D})}$
$=.98^{*} .01^{*} .98^{*} .01+.05^{*} .99 * .05 * .99=.00254629 b$
$\mathrm{P}(\mathrm{D} \mid(\mathrm{S} \cap \mathrm{T})=.00009604 / .00254629=0.28$
3.18

We are given that $0<\mathrm{P}(\mathrm{A})<1$ and $0<\mathrm{P}(\mathrm{B})<1$.
a) If A and B are disjoint, then $\mathrm{A} \cap \mathrm{B}=\Phi$ so $0=\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \mathrm{A})$.

We are given that $\mathrm{P}(\mathrm{A})>0$. Thus $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ must be 0 .
But $\mathrm{P}(\mathrm{B})>0$. Hence, $\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \neq \mathrm{P}(\mathrm{B})$ and A and B are not independent.
b) If A and B are independent, then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})>0$ since both A and B are non-zero. But this means that $\mathrm{A} \cap \mathrm{B}$ is not empty (otherwise the probability of their intersection would be 0 .) Hence, A and B are not disjoint.
c) Suppose A is a subset of B. Then $A \cap B=A$. Thus $P(A)=P(A \cap B)=P(A) * P(B \mid A)$ and we see that $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=1 \neq \mathrm{P}(\mathrm{B})$ since $\mathrm{P}(\mathrm{B})>1$. Thus A and B are not independent.
d) A is a subset of A U B, and by part c) above cannot in any event be independent.

